
www.manaraa.com

70
A Calculus for Access Controlin Distributed SystemsM. Abadi, M. Burrows, B. Lampson, G. Plotkin

February 28, 1991, revised August 28, 1991

www.manaraa.com

Systems Research CenterDEC's business and technology objectives require a strong research program.The Systems Research Center (SRC) and three other research laboratoriesare committed to �lling that need.SRC began recruiting its �rst research scientists in l984|their charter, toadvance the state of knowledge in all aspects of computer systems research.Our current work includes exploring high-performance personal computing,distributed computing, programming environments, system modelling tech-niques, speci�cation technology, and tightly-coupled multiprocessors.Our approach to both hardware and software research is to create and usereal systems so that we can investigate their properties fully. Complexsystems cannot be evaluated solely in the abstract. Based on this belief,our strategy is to demonstrate the technical and practical feasibility of ourideas by building prototypes and using them as daily tools. The experiencewe gain is useful in the short term in enabling us to re�ne our designs, andinvaluable in the long term in helping us to advance the state of knowledgeabout those systems. Most of the major advances in information systemshave come through this strategy, including time-sharing, the ArpaNet, anddistributed personal computing.SRC also performs work of a more mathematical
avor which complementsour systems research. Some of this work is in established �elds of theoreticalcomputer science, such as the analysis of algorithms, computational geome-try, and logics of programming. The rest of this work explores new groundmotivated by problems that arise in our systems research.DEC has a strong commitment to communicating the results and experiencegained through pursuing these activities. The Company values the improvedunderstanding that comes with exposing and testing our ideas within theresearch community. SRC will therefore report results in conferences, inprofessional journals, and in our research report series. We will seek usersfor our prototype systems among those with whom we have common researchinterests, and we will encourage collaboration with university researchers.Robert W. Taylor, Director

www.manaraa.com

iii

www.manaraa.com

A Calculus for Access Controlin Distributed SystemsM. Abadi, M. Burrows, B. Lampson, G. PlotkinFebruary 28, 1991, revised August 28, 1991

iv

www.manaraa.com

M. Abadi, M. Burrows, and B. Lampson are at Digital Equipment Corpo-ration, Systems Research Center. 130 Lytton Avenue, Palo Alto, California94301, USA.G. Plotkin is at the Department of Computer Science, University of Edin-burgh, King's Buildings, Edinburgh EH9 3JZ, UK.
c
Digital Equipment Corporation 1991This work may not be copied or reproduced in whole or in part for anycommercial purpose. Permission to copy in part without payment of fee isgranted for nonpro�t educational and research purposes provided that allsuch whole or partial copies include the following: a notice that such copy-ing is by permission of the Systems Research Center of Digital EquipmentCorporation in Palo Alto, California; an acknowledgment of the authors andindividual contributors to the work; and all applicable portions of the copy-right notice. Copying, reproducing, or republishing for any other purposeshall require a license with payment of fee to the Systems Research Center.All rights reserved. v

www.manaraa.com

Authors' AbstractWe study some of the concepts, protocols, and algorithms for access controlin distributed systems, from a logical perspective. We account for how aprincipal may come to believe that another principal is making a request,either on his own or on someone else's behalf. We also provide a logicallanguage for access control lists, and theories for deciding whether requestsshould be granted.

vi

www.manaraa.com

Contents1 The Problem 12 Overview 43 The Basic Logic 63.1 A calculus of principals : 63.2 A logic of principals and their statements : : : : : : : : : : : 103.3 Semantics : 113.4 On idempotence : 134 Roles 154.1 What roles are for : 154.2 Roles, groups, and resources : : : : : : : : : : : : : : : : : : : 164.3 The encoding : 175 Delegation 185.1 The forms of delegation : 195.2 The encoding : 246 Protocols and Algorithms 276.1 Delegation : 276.1.1 Delegation from users to nodes : : : : : : : : : : : : : 276.1.2 Delegation from nodes to nodes : : : : : : : : : : : : : 286.2 Access control decisions : 296.2.1 A general access control problem : : : : : : : : : : : : 296.2.2 A more tractable problem : : : : : : : : : : : : : : : : 316.3 An example : 357 Extensions 377.1 Intersection : 37vii

www.manaraa.com

7.2 Subtraction : 387.3 Variables : 39Glossary 40Acknowledgements 41References 42

viii

www.manaraa.com

1 The ProblemAt least three ingredients are essential for security in computing systems:� A trusted computing base: the hardware and systems software shouldbe capable of preserving the secrecy and integrity of data.� Authentication: it should be possible to determine who made a state-ment; for example, a user should be able to request that his �les bedeleted and to prove that the command is his, and not that of anintruder.� Authorization, or access control: access control consists in decidingwhether the agent that makes a statement is trusted on this statement;for example, a user may be trusted (hence obeyed) when he says thathis �les should be deleted.These ingredients are fairly well understood in centralized systems.Distributed systems pose new problems. Scale becomes an issue, as ul-timately one would want to envision a global distributed system, with aglobal name space and global security. In addition, there are di�cultieswith communication, booting, loading, authentication, and authorization.The computing base of a distributed system need not reside in a singlelocation, under a single management. This implies, in particular, that securecommunication cannot be taken for granted. Since it is hard to providephysically secure communication lines, some form of encryption is typicallyrequired. In what follows, we assume that shared-key encryption (e.g., [8])and public-key encryption (e.g., [9, 22]) are available where needed, but weuse them frugally. In addition, there are problems of secure booting andsecure loading of software. For instance, the operating system that a hostruns may be obtained from a repository across the network; a mechanism isneeded to guarantee that this software is an authentic release, free of viruses.This mechanism will inevitably rely on authentication and access control,as it is necessary to restrict who can make a release.The nodes of a distributed system may act on their own behalf, or on behalfof users. Users and nodes trust one another to di�erent extents. Moreover,a user may be trusted only when he is working at certain nodes; he mayhave more rights at his o�ce than when working from a remote public1

www.manaraa.com

terminal. Therefore, both users and nodes need to be authenticated, andtheir identities considered in access control decisions.These issues give rise to a change in the nature of authentication and accesscontrol. The basic questions of authentication and access control are, always,\who is speaking?" and \who is trusted?" Typically the answer is the nameof a simple principal (a user or a host). In a distributed environment, thesequestions can receive a variety of answers; the notion of principal can beextended, to include:� Users and machines.� Channels, such as input devices and cryptographic channels. Thereis no formal reason to distinguish channels from users and machines,and it is advantageous not to. Cryptographic channels are identi�edby keys, and so we may write that the key K says s when s is assertedin a message decrypted with K.� Conjunctions of principals, of the form A ^ B. If A and B make thesame statement s, then A ^ B says s as well. It often happens thatA ^ B is trusted on s, but neither A nor B is trusted by himself|a\joint signature" is required.� Groups. It is often inconvenient to list explicitly all of the principalsthat are trusted in some respect, both because the list would be longand because it may change too often. Groups provide an indirectionmechanism. The use of groups implies the need for a scheme for de-ciding whether a principal is a member of a group. This is not alwaysstraightforward, for example when the registrar for a group is remote;group membership certi�cates then become necessary.� Principals in roles, of the form A as R. The principal A may adopt therole R and act under the name A as R when he wants to diminish hispowers, in particular as a protection against blunders. For example,a system manager may act in the role normal-user most of the time,and enable the manager role only on occasion. Similarly, a machinemay adopt a weak role before beginning to run a piece of untrustedsoftware, or before delegating authority to an untrusted machine.� Principals on behalf of principals, of the form B for A. The principalA may delegate authority to B, and B can then act on his behalf,2

www.manaraa.com

using the identity B for A. In the most common case, a user Adelegates to a machine B. It is also possible for a machine to delegateto another machine, and for delegations to be cascaded (iterated); thenwe encounter expressions such as C for (B for A).This list raises formal questions of some practical importance. First, there isa need to determine which of the operations on principals should be viewedas primitive, and which can be de�ned from the others. Then one may askwhat laws the operations satisfy, as for example whether B for (A ^ A0)and (B for A) ^ (B for A0) are in some sense equivalent; if two principalsare equivalent then they should be granted the same requests. The resultingtheory of principals should provide a reasonable degree of expressiveness, andit should be amenable to a mathematical justi�cation. It is also essential thatthe theory of principals be simple, because users need to specify permissionson resources and programs need to make access control decisions.Further, a variety of protocols and algorithms must be designed and ana-lyzed. Mechanisms are required for secure booting and loading, for joininggroups and for proving membership, for adopting roles, for delegations ofauthority and for certifying such delegations, and for deciding whether arequest should be granted.This paper is a study of some of the concepts, protocols, and algorithmsfor security in distributed systems, with a focus on access control. Ourtreatment is fairly formal, as it is based on logics. Our main goal is toisolate some useful and mathematically tractable concepts. We account forhow a principal may come to believe that another principal is making arequest, either on his own or on someone else's behalf. We also providea logical language for access control lists (ACLs), and theories for decidingwhether requests should be granted. The logics enable us to explain a varietyof protocols which can di�er from one another in subtle ways.On occasion, the formal analysis has suggested ideas for implementations,for example that some digital signatures could be saved. Moreover, logicsmake it possible to describe protocols and policies at a reasonable level ofabstraction; we avoid the need for ad hoc arguments about particular imple-mentations. This abstraction is important in the context of heterogeneousdistributed environments, where several implementations of a design maycoexist. 3

www.manaraa.com

Our study is intended as a formal basis for parts of a security architecture,and for the Digital Distributed Systems Security Architecture (DSSA) inparticular [11]; this architecture is currently under implementation. Otherformal explanations of security are conceivable. We hope that this workclari�es some of the issues that these alternative accounts may address.The next section is an overview. We describe the basic logical frameworkin section 3. Sections 4 and 5 extend the treatment with roles and delega-tion. Then, in section 6, we consider delegation schemes and algorithms formaking access control decisions. Section 7 is a brief discussion of additionalconstructs. A short glossary appears at the end.This paper does not cover many issues in the area; some of these issuesare brie
y mentioned in passing. We study only authorization mechanismsbased on ACLs; we do not examine particular security policies, nor mattersconnected with mandatory access control. Most implementation considera-tions are left to a companion paper [17] and to future work.2 OverviewComposite principals play a central role in informal reasoning; for example,one often talks about \A and B" and \B on behalf of A." Therefore, westart by introducing formal notations for composite principals.Some classical constructors for composite principals such as conjunction anddisjunction come to mind �rst:� A ^ B: A and B as co-signers. A request from A ^ B is a requestthat both A and B make. (It is not implied that A and B make thisrequest in concert.)� A_B is the dual notation; A_B represents the group of which A andB are the sole members.Conjunction is important in our designs. Disjunction is often replaced withimplication, in particular in dealing with groups. As discussed further below,\A is a member of the group G" can be written A) G. The group G canbe named, as all other principals; it need not be given a de�nition beyondthat implicit in formulas such as A) G. The membership of G can bededuced from what formulas of the form A) G have been asserted. We donot include disjunction among our basic primitives.4

www.manaraa.com

There are also new connectives, in particular:� A as R: the principal A in role R.� BjA: the principal obtained when B speaks on behalf of A, not neces-sarily with a proof that A has delegated authority to B; by de�nition,BjA says s if B says that A says s; we pronounce BjA as \B quotingA."� B for A: the principal obtained when B speaks on behalf of A, withappropriate delegation certi�cates; B for A says s when A has del-egated to B and B says that A says s, possibly after some checkingthat s is reasonable.Of these, only j is primitive in our approach; for and as are important, butthey are coded in terms of ^ and j. Since for is stronger than j, we tend touse j only for encoding for and as .In order to de�ne the rights of these composite principals, we develop analgebraic calculus. In this calculus, one can express equations such as (B ^C) for A = (B for A) ^ (C for A), and then examine their consequences.Since ^ is the standard meet in a semilattice, we are dealing with an orderedalgebra, and we can use a partial order) among principals: A) B standsforA = A^B, and it means thatA is at least as powerful as B; we pronouncethis \A implies B" or \A speaks for B."A modal logic extends the algebra of principals. In this logic, A says srepresents the informal statement that the principal A says s. Here s mayfunction as an imperative (\the �le should be deleted") or not (\C's publickey is K"); imperative modalities are not explicit in the formalism.The modal logic is a basis for various algorithms and protocols. For example,it is possible to explain logically how two principals A and B establish apublic key Kd for B for A.The logic also underlies a theory of ACLs. We write � for the usual logicalimplication connective, and A controls s as an abbreviation for (A says s) �s, which expresses trust in A on the truth of s; in the logic, an ACL for aformula s is a list of assertions of the form A controls s. If s represents acommand to a server, then the ACL entry A controls s records the server'strust in A on s, and hence that A will be obeyed when he says s. When sis clear from context, the ACL for s may simply be presented as the list ofprincipals trusted on s. 5

www.manaraa.com

If A) B and B controls s then A controls s as well. Therefore, ACLs maynot mention all trusted principals explicitly; when B is listed, access shouldbe granted to any A such that A) B. It is not always entirely trivial todecide whether a request should be granted, and our theory addresses thisissue.So far we have discussed ACLs for logical formulas, with the view that eachformula corresponds to a separate assertion or command, and that it canhave a separate ACL. In practice, these ACLs could be combined, and theremay be dependencies between them. For example, the ACLs that pertainto reading and writing a �le might be related, and an ACL that controlsmodi�cations to another ACL might also control modi�cations to itself. Wedo not model these combinations and dependencies.Secure channels, including those secured by cryptography, are representedas principals; we have no formal treatment of encryption functions. Thelogic does not consider the problems associated with timestamps and life-times, either. Therefore, we do not explain how principals come to believethat messages are recent, and not replays. In these respects, the logic ismore abstract than the logic of authentication proposed in [4]. The logicof authentication has as its goal describing and debugging fairly low-levelauthentication protocols; in contrast, the logic discussed here is intended asan aid in developing and applying a general design.3 The Basic LogicThis section describes the basic logical framework, with syntax, axioms, andsemantics. The laws for as and for appear in sections 4 and 5.This section includes discussions of alternative approaches and of relevantmathematical concepts; in particular, the last subsection presents some in-teresting axioms that we do not adopt. The essential material is in the mainbodies of subsections 3.1 and 3.2.3.1 A calculus of principalsWe study a calculus of principals, in a minimal syntax. As discussed later in6

www.manaraa.com

the paper, this syntax su�ces for expressing roles and the needed delegationconnectives.Principals form a semilattice under the operation of conjunction, and obeythe usual semilattice axioms:� ^ is associative, commutative, and idempotent.As usual, A) B can be taken as an abbreviation for A = A ^ B, or = canbe de�ned in terms of).Implication is often used to represent group membership. This notion ofmembership is slightly peculiar, and in particular it is transitive. We havefound that transitivity is rather convenient for reasoning about hierarchicalgroups (groups with subgroups). For example, if A is a member of G andG a subgroup of F , we may write A) G and G) F , and then it followsthat A) F , which expresses that A is a member of F . Moreover,) has afairly pleasant interaction with the other connectives of our calculus.However, our treatment of groups is incomplete. It would be desirable toprovide group subtraction and intersection operations. It would also bedesirable to provide naming support for usual subgroups|so that therewould be a standard operation that one applies to a group name G to obtainthe group of principals with a certain position or job in G. Most probably,these operations would appear only at the lowest level of logical formulas,and would not mix with other constructs. Therefore, we do not includethese additional operations here; intersection and subtraction are discussedin section 7.The principals form a semigroup under j:� j is associative.The �nal axiom is the multiplicativity of j in both of its arguments, whichmeans:� j distributes over ^.Multiplicativity implies monotonicity.In short, the axioms given for principals are those of structures known asmultiplicative semilattice semigroups. (Often, these same axioms are taken7

www.manaraa.com

for structures with some sort of union or disjunction, instead of ^, andthen the term additive is preferred to multiplicative.) A common exampleof a multiplicative semilattice semigroup is an algebra of binary relationsover a set, with the operations of union and composition; algebras of binaryrelations are discussed further below.The syntax for reasoning about principals is much the obvious one. Wemanipulate equations between principal expressions, built from atoms A0,A1, A2, : : :with the symbols ^ and j. We combine equations into booleanformulas, and then adopt the usual axioms from propositional logic, andthe axioms for the algebraic structures of choice (multiplicative semilatticesemigroups, when not stated otherwise).Section 6 discusses decidability issues for the calculus of principals.On binary relationsAs mentioned, an example of a multiplicative semilattice semigroup is analgebra of binary relations over a set, with the operations of union andcomposition. Now we discuss binary relations in some detail, and we usethem in the rest of the paper in semantic discussions; those readers notinterested in formal semantics may wish to skip all references to binaryrelations.A multiplicative semilattice semigroup isomorphic to an algebra of binaryrelations is called representable. In fact, the binary-relation example is com-mon in a mathematical sense: every free multiplicative semilattice semigroupis representable (e.g., [3, 21]). This implies that the equational theory ofmultiplicative semilattice semigroups coincides with that of binary-relationalgebras.Equational theories do not su�ce for reasoning about access rights, as for ex-ample group-membership assumptions are needed. Since the binary-relationmodel is a clear, appealing one, it is then natural to hope that every mul-tiplicative semilattice semigroup is representable. Andr�eka has recentlyproved that this is not the case [3]. She has also studied the distributivemultiplicative semilattice semigroups, which are de�ned by the additionaldistributivity axiom:� if B ^ C) A then there exist B0 and C 0 such that B) B0, C) C 0,and A = B0 ^ C 0. 8

www.manaraa.com

Every distributive multiplicative semilattice semigroup is representable. Theclass of distributive multiplicative semilattice semigroups is a quasi-variety,but neither a variety nor �nitely axiomatizable.The algorithmic applications of the distributivity axiom are hard to see,because of its existential nature. Therefore, in the remainder of the paper,we examine both the axiomatic and the model-theoretic possibilities. Wetend to work axiomatically, with the theory of multiplicative semilatticesemigroups, but rely on binary relations as a way of constructing models.Moreover, section 6 describes an algorithm for the binary-relation model.Other algebraic structuresIt is possible, and somewhat natural, to consider operators on principalsbeyond ^ and j. Here we consider a few operators with a mathematicalorigin; these operators are used very seldom elsewhere in this paper.A unit 1 turns the semigroup into a monoid; 1 can be viewed as a per-fectly honest principal. The unit introduces further distinctions betweenthe axiomatic and the binary-relation viewpoints. For example, any rela-tion smaller than the unit is idempotent; this is not a theorem of multi-plicative semilattice monoids. Thus, Andr�eka's remarkable representabilityresult seems intriguingly fragile.A disjunction operation turns the distributive semilattice into a distributivelattice. Andr�eka has proved that some multiplicative semigroup distributivelattices are not representable, but the free ones are representable.If the lattice operations are generalized to the in�nite case, then we havea quantale. In a quantale, the product fully distributes over one of thelattice operations; here it is ^. In particular, this says that the empty meet0 is absorbent for j. Quantales provide models for (intuitionistic) linearlogics [13, 26]. In these logics, the multiplicative conjunction connective (j,in our case) is often understood as a form of parallel composition [7, 25, 1].In our setting, j is in fact a special form of parallel composition, though anoncommutative one.Finally, it is possible to add the remaining operator of Kleene algebras [16],namely Kleene's iteration operator ()�. We have not yet found a need forthis. 9

www.manaraa.com

3.2 A logic of principals and their statementsHere we develop a modal logic based on the calculus of principals.SyntaxThe formulas are de�ned inductively, as follows:� a countable supply of primitive propositions p0, p1, p2, : : : are formulas;� if s and s0 are formulas then so are :s and s ^ s0;� if A and B are principal expressions then A) B is a formula;� if A is a principal expression and s is a formula then A says s is aformula.We use the usual abbreviations for boolean connectives, such as �, and wealso treat equality between principals (=) as an abbreviation. In addition,A controls s stands for (A says s) � s.AxiomsThe basic axioms are those for normal modal logics [14]:� if s is an instance of a propositional-logic tautology then ` s;� if ` s and ` (s � s0) then ` s0;� ` A says (s � s0) � (A says s � A says s0);� if ` s then ` A says s, for every A.The calculus of principals is included:� if s is a valid formula of the calculus of principals then ` s.Other axioms connect the calculus of principals to the modal logic:� ` (A ^B) says s � (A says s) ^ (B says s);10

www.manaraa.com

� ` (BjA) says s � B says A says s;� ` (A) B) � ((A says s) � (B says s)).The last axiom is equivalent to (A = B) � ((A says s) � (B says s)), asubstitutivity property.Other relations between principalsTwo relations similar to) deserve mention at this point.Let us write A! B if, for every s, if A says s then B says s. Although !is weaker than), it su�ces in many of the situations where we currentlyuse), and hence we have contemplated adding it to the formalism. It mayalso be convenient to have second-order quanti�cation over formulas andover principals. Second-order quanti�cation enables us to de�ne A ! B as8x:((A says x) � (B says x)). We do not adopt any of these additionalconstructs, for the sake of minimality. However, there is no di�culty ingiving a semantics for them, and the proof rules needed in examples wouldbe simple.Another important relation between principals is de�ned by the formula(A says false) � (B says false), which we abbreviate A 7! B. Intuitively,A 7! B means that there is something that A can do (say false) that yieldsan arbitrarily strong statement by B (in fact, false). Thus, A 7! B meansthat A is at least as powerful as B in practice. Clearly, A) B impliesA 7! B. We do not have the converse, and actually the converse doesnot seem attractive, as for example B 7! (BjA) is valid but we would notwant B) (BjA) (since B may wish to say s without this being taken as aquotation of A). Nevertheless, the relation 7! serves as a point of referencein axiomatizing the algebra of principals; a careful study of 7! may be ofsome interest.3.3 SemanticsThe simplest semantics is a Kripke semantics, based on accessibility rela-tions [14]. A structure M is a tuple hW;w0; I; Ji, where:� W is a set (as usual, a set of possible worlds);11

www.manaraa.com

� w0 is a distinguished element of W ;� I is an interpretation function which maps each proposition symbolto a subset of W (the set of worlds where the proposition symbol istrue);� J is an interpretation function which maps each principal symbol toa binary relation over W (the accessibility relation for the principalsymbol).The meaning function R extends J , mapping a principal expression to arelation: R(Ai) = J(Ai)R(A^ B) = R(A)[R(B)R(BjA) = R(A) � R(B)There is no di�culty in giving a semantics to other operations on principalssuch as in�nite conjunctions, disjunctions, 0, and 1.This simple relational model provides some justi�cation for the axioms forprincipals. If R(A) = R(B), then it is natural to have A = B, and thisholds in the semantics. For example, R(Cj(BjA)) = R((CjB)jA) providesa justi�cation for the associativity of j.The meaning function E maps each formula to its extension, that is, to theset of worlds where it is true:E(pi) = I(pi)E(:s) = W � E(s)E(s ^ s0) = E(s) \ E(s0)E(A says s) = fw j R(A)(w) � E(s)gE(A) B) = W if R(B) � R(A) and ; otherwisewhere R(C)(w) = fw0 j wR(C)w0g.A formula s holds in M at a world w if w 2 E(s), and it holds in M if itholds at w0. In the latter case, we write M j= s, and say that M satis�ess. Moreover, s is valid if it holds in all models; we write this j= s. Theaxioms are sound, in the sense that if ` s then j= s. Although useful for ourapplication, the axioms are not complete. For example, the formula(C says (A) B)) � ((A) B) _ (C says false))12

www.manaraa.com

is valid but not provable. A more interesting source of incompleteness isthat the algebras of principals that underly the semantics are obviouslyrepresentable, while some multiplicative semilattice semigroups are not. (Wedo obtain a completeness result for a sublanguage, in section 6.)More abstract modelsA more abstract model may be desirable in order to avoid the requirementof representability. A �rst step would be to modify the notion of structure.A structure would become a tuple hW;w0; I; J;P ;Fi, where P is a multi-plicative semilattice semigroup (the principals), and F is a homomorphismfrom P to W 2. The functions J and R map principal expressions not tobinary relations but to principals|the corresponding binary relations beingstill available via F . The corresponding semantics is:R(Ai) = J(Ai)R(A ^B) = R(A)^R(B)R(BjA) = R(A) � R(B): : :E(A says s) = fw j F(R(A))(w)� E(s)gE(A) B) = W if R(A)) R(B) and ; otherwiseNow it is consistent to have two di�erent principals with the same associatedbinary relation.This semantics is imbalanced, as it gives an abstract interpretation of prin-cipals but not of propositions. A more balanced, abstract semantics is pos-sible, in terms of structures similar to dynamic algebras (see Pratt's [21]for a recent discussion of dynamic algebras). The operator says is directlyanalogous to the usual partial correctness operator [] of dynamic logic. Itconnects the two sorts of the algebras, that of principals and that of propo-sitions.3.4 On idempotenceIdempotence postulates are attractive. For example, when A is a user, thereseems to be little advantage in distinguishing AjA and A; in fact, this dis-13

www.manaraa.com

tinction seems quite arti�cial. Therefore, we may postulate that AjA = A,for all A, and hence that A says A says s and A says s are equivalent. Theidempotence of j implies the idempotence of for (see section 5 for details).Here we discuss the idempotence of j and for ; most of the remarks beloware written in terms of j, but exactly the same arguments apply to for .The idempotence axiom is rather convenient for handling chains of princi-pals. For instance, suppose that G represents a collection of nodes, that Band C represent members of G, and that an ACL includes GjA. Thanksto idempotence, CjBjA obtains access. This means that multiple \hops"within a collection of nodes does not reduce rights and should not reducesecurity. In particular, there is no need to postulate that GjG) G, or tomake sure that GjGjA appears in the ACL explicitly.In addition, idempotence yields (A ^ B)) (BjA), since (A ^ B) = (A ^B)j(A ^ B) and j is monotonic, and similarly (A ^ B)) (B for A). Theseimplications are rather pleasing, but not necessarily intuitive. They compli-cate the problem of making access control decisions. When (A ^ B) makesa request, one must check whether either (BjA) or (AjB) is trusted, andgrant access if either is trusted.Finally, the semantics of subsection 3.3 does not validate idempotence. Wehave been unable to �nd a sensible condition on binary relations that wouldforce idempotence and would be preserved by both union and composition.A related symptom is that idempotence seems less compelling for complexprincipals than for simple ones.For all these reasons, we prefer to do without idempotence; in compensation,we often rely on assumptions of the form GjG) G, or write less elegantbut more explicit ACLs.We give a similar treatment to other possible axioms related to idempotence.Although in many cases it is reasonable to assume formulas of the formsA controls (B) A) and A controls (t � A says s), this does not seem wellfounded in general. In particular, when A is a group, if A controls (B) A)for all B then any member of A can add members to A. Therefore, wechoose to adopt neither A controls (B) A) nor A controls (t � A says s)as general axioms. 14

www.manaraa.com

4 RolesThe formal system we have presented so far includes no exotic connectivesfor roles or delegation. We discuss roles in this section and delegation in thenext one. We start with an informal argument on the nature of roles andthen describe their logic.4.1 What roles are forThere are many situations in which a principal may wish to reduce hispowers. We now describe a few, as motivation for our treatment of roles.They are all examples of the principle of \least privilege," according to whicha principal should have only the privileges it needs to accomplish its task.An administrator may want to have the powers of a normal user most ofthe time, and exercise his extraordinary powers only when needed. For ex-ample, users of the unix1 operating system with system-manager privilegestypically run with their own, normal identity when that su�ces, in order toavoid costly mistakes.When a principal wishes to run a piece of untrusted software, he should beable to invoke it with reduced powers. It is important that the untrustedcode should not be able to increase its powers beyond those granted initially.This is done in capability systems by restricting capabilities before passingthem across address spaces, and passing as few capabilities as possible. Intimesharing systems it is common for untrusted software to be tested withunprivileged user accounts that are used for no other purpose.Analogously, when a principal wishes to delegate his powers to a machineless trustworthy than his own, he should be able to limit the rights passed.These situations can be handled by the use of roles. A principal A mayadopt a role R and act with the identity A as R when he wants to diminishhis powers. Thus, A can decide to become A as R, and then later perhapsA as R as R0. Role adoption is not reversible, in the sense that A as Rcannot, on his own, recover the full powers of A. This prevents untrustedsoftware that has been granted only limited rights from obtaining the fullrights of the user that invoked it. But this does not mean that a user who1unix is a registered trademark of unix System Laboratories, Inc.15

www.manaraa.com

has once relied on roles can never again exercise his full powers: a processacting on behalf of the user may hold on to the credentials for the user'soriginal identity, which it could use when instructed.As a practical matter, it may be best for users to have only restricted powerswhen they �rst log in. In this way, users could be forced to authenticatethemselves a second time when they want extraordinary powers. Our gen-eral treatment of roles does not require or preclude such implementationdecisions, which are however important in building a usable system.4.2 Roles, groups, and resourcesA principal A may reduce his powers in di�erent ways by adopting di�erentroles, say R or R0. Some ACLs may grant permissions to A as R but notto A as R0, and vice versa. There is however no intrinsic di�erence betweenR and R0; that is, if the uses of their names were swapped consistentlyin all ACLs, then the e�ects of adopting the two roles would be swapped.Moreover, R and R0 may be used di�erently at two independent sites. Thus,the meaning of roles could be a matter of local policy at each site; this policyis re
ected in the writing of ACLs.In practice, we expect many roles to be related to groups. If G is a group,there may be a role Grole associated with it, so that a member of a groupG can act in the role of member of G. A member A of several groups F , G,H , : : :can select the privileges associated with one, say G, by adopting thecorresponding Grole . Without this role A matches any ACL with an entryF , but A as Grole need not. However, A as Grole matches any ACL withan entry G as Grole , and if we accept the rule that G = G as Grole thenA as Grole also matches any ACL with an entry G.It is tempting to establish a formal identi�cation between the group G anda corresponding role G role. In what follows, for simplicity, we do not iden-tify roles and groups. In fact, this identi�cation would interact somewhatstrangely with our encoding of roles, given below. We do allow roles relatedto groups (such as G role), but this relation is not formal; a formal operatorfor relating groups and roles may be a useful extension of our calculus.It is reasonable to expect that not all roles make sense for all principals,and that a principal can act only in certain roles. For example, a principalmay be allowed to act as G role only if he is a member of G. The simplestimplementation of this idea relies on the judicious writing of ACLs. Roles16

www.manaraa.com

can be adopted freely, and any A can speak in the role G role, with theidentity A as G role. However, it may be that no ACL in the system grantsaccess to A as G role, and for example the ACL G as G role does not if Ais not a member of G. It is this implementation that we choose.Not all roles that arise naturally are related to groups. For example, theremay be a role such that adopting it makes it possible to access only acertain directory in the �le system; the role corresponds naturally to a setof resources (�les) rather than to any group of principals.4.3 The encodingGiven the view that roles can be freely adopted, it is quite satisfactory tode�ne A as R to equal AjR.In many cases, this encoding makes some intuitive sense. For example, letA be a machine and R a (possibly untrusted) piece of software that A isrunning. The requests that A makes while running this software should notemanate from A with full powers; rather, they should emanate from A insome restricted role. The role can be named after the piece of software,or after its class (e.g., untrusted-software). In any case, when A makes arequest s in this role, A says that R says s. This is precisely AjR says s.Similarly, if A is a user and R is one of his positions, we can think of R asa program that A is following, and apply the analysis above.Furthermore, this presentation of roles o�ers formal advantages, thanks tothe monotonicity, the multiplicativity, and the associativity of j.� Since j is monotonic in both arguments, if R is a more trusted rolethan R0 and A a more trusted principal than A0, then A as R ismore trusted than A0 as R0, that is, if R) R0 and A) A0 then(A as R)) (A0 as R0). Thus, it is possible to exploit a hierarchy ofroles.� The multiplicativity of j yields that A ^ B in a role R is identical tothe conjunction A and B both in role R:(A ^B) as R = (A as R)^ (B as R)Similarly, we can exploit the conjunction operation for roles:A as (R^ R0) = (A as R) ^ (A as R0)17

www.manaraa.com

Both of these properties seem reasonable for roles as we conceive theminformally, and they are quite handy.� Associativity yields a satisfactory interaction between roles and dele-gation. In particular, the user A in role R on a machine B is identicalto the user A on a machine B, with the compound in role R:Bj(A as R) = (BjA) as Rand then the encoding of for , given in the next section, yields:B for (A as R) = (B for A) as RSome special properties for roles can be expected:� We sometimes rely on the postulates that all roles are idempotent(RjR = R) and commute with one another (R0jR = RjR0). Thisyields: A as R as R = A as Rand A as R as R0 = A as R0 as R(We make it explicit when these properties are assumed.)� We assume A) (A as R) for all A. With a unit, this could just bewritten 1) R. In the binary-relation model, 1) R means that rolesare subsets of the identity relation; note that the previous idempotenceand commutativity properties follow from this.5 DelegationDelegation is a fairly ill-de�ned term. Here we explain our approach todelegation; some example schemes for delegation illustrate the use of thelogic. Then we give an encoding of delegation.18

www.manaraa.com

5.1 The forms of delegationDelegation is a basic primitive for secure distributed computing. It is theability of a principal A to give to another principal B the authority to acton A's behalf. When B requests a service from a third principal, B mightpresent credentials which are supposed to demonstrate that B is making therequest and that A has delegated to B.Naturally, access control decisions need to take delegations into account. Arange of designs is possible.In the simplest case, A delegates all of his rights to B. Upon B's request, aservice will be granted if it would have been granted to A, had A requestedit directly.An obvious improvement is for A to delegate only some of his rights, such asthe right to read certain �les from a �le server. Capability systems (e.g., [10,23, 18]) embody this approach in the case where delegation certi�cates can betransferred; the containment of capabilities is a serious concern. If delegationcerti�cates are not transferable, cascaded delegations are hampered, as Amay have to prepare adequate certi�cates for any expected collaborators toB in advance. In all cases, the provider of the service never checks that Bis a reasonable delegate for A.These considerations suggest more sophisticated designs, where access con-trol decisions may depend on the identities of both A and B. For example,the �le server may not let a known malicious workstation read a user's�les, even if the user was unlucky enough to log onto the workstation. The�le server may also let a trusted node read �les over which the user hasexecute-only rights, in the belief that these �les will not be shown to theuser, but just executed; here the node acts as a protected subsystem, ando�ers guarantees that its clients cannot provide by themselves. These exam-ples illustrate a desirable
exibility. It exists in some form in a few designsand systems [24, 15], and it is a prominent component of DSSA [12]. Webelieve that it should and will become widespread.Di�erent mechanisms embody the concept of delegation in di�erent settings.A user might rely on a smart-card for delegating to a workstation, while del-egation across the address spaces of a machine might bene�t from operatingsystem support. (The use of smart-cards is discussed in [2], with a simplisticview of delegation.) Similarly, credentials can be signed with either shared-key cryptography or with public-key cryptography, or they might not be19

www.manaraa.com

signed at all when a secure physical channel is available. Recognizing andtreating all these variants as mere instances of delegation makes possible auniform view of access control throughout an entire distributed system.Delegation relies on authentication, which is often achieved through au-thentication protocols (see for example [20, 5, 19, 15, 4]). In fact, someof the messages for delegation can be combined with those for authentica-tion. However, in our study, it is often convenient to view delegation asindependent.Delegation without certi�catesThe framework outlined so far enables us to describe and compare variousschemes for delegation. In what follows, A delegates to B, who makes re-quests to C. For instance, A may be a user with a su�ciently powerfulsmart-card, B a workstation, and C a �le server. For simplicity, the author-ity delegated from A to B is not limited to any particular class of requests,and A does not adopt a special role before the delegation.We assume that synchronized clocks are available, and that appropriatetimestamps, lifetimes, sequence numbers, and message type �elds are in-cluded and checked for all messages. We also assume that all principals canperform digital signatures, for example with the RSA algorithm [22]. Wedenote by KA and KB the public keys for A and B, and by K�1A and K�1Bthe matching secret keys. The formula K says X represents the certi�cateX encrypted under K�1, which is commonly written fXgK�1.A certi�cation authority S provides certi�cates for the principals' public keysas needed. The necessary certi�cates are KS says KA) A and KS saysKB) B, where KS is S's public key.We consider three instances of delegation. In each case, we are led to askwhether composite principals, such as BjA, appear on C's ACL. The sim-plest instance of delegation is delegation without certi�cates:1. When B wishes to make a request r on A's behalf, B sends the signedrequest along with A's name, for example in the format KB saysA says r.2. When C receives the request r, he has evidence that B has said thatA requests r, but not that A has delegated to B; then C consults20

www.manaraa.com

the ACL for request r, and determines whether the request should begranted under these circumstances.The logic serves in describing the reasoning of the service provider, C, whomakes the access control decision. Some assumptions are needed. First, Cmust believe that KS is S's public key:KS) Sand C obtains a certi�cate encrypted under the inverse of KS :KS says (KB) B)These two formulas yield: S says (KB) B)We should assume that C trusts S for such statements:S controls (KB) B)and we immediately obtain that C has B's key:KB) BIn addition, C sees a message under the inverse of KB, requesting r onbehalf of A; in other words, KB says A says rImmediately, C obtains: B says A says rthat is, (BjA) says rNow C consults an ACL for r. If BjA appears in this ACL, that is, if BjAis trusted on r, then C believes r|access is granted.21

www.manaraa.com

Delegation with certi�catesThe protocol just described can hardly be considered satisfactory in gen-eral. It is preferable for A to issue a delegation certi�cate that proves thedelegation to B:1. After mutual authentication, A issues a certi�cate to B, under A's key.This certi�cate states that A has delegated some authority to B.2. When B wishes to request r on A's behalf, no further interaction withA is needed: B can present A's certi�cate to C, along with KB saysA says r.3. At this point C has evidence that B has requested r on behalf of A;now C consults the ACL for r, and determines whether the requestshould be granted.For the time being, let us use the notation B serves A to mean that B is adelegate for A. (But serves need not be primitive; see subsection 5.2.) Thenthe delegation certi�cate from A for B can be expressed:KA says (B serves A)and the usual checking of public-key certi�cates from S yields:A says (B serves A)If C trusts A on this statement, C gets:((BjA) says r) ^ (B serves A)In our theories, this implies: (B for A) says rAgain C can consult the ACL for r, and r will be granted if the list includesB for A. In particular, r will be granted if the list mentions BjA, a weakerprincipal, but may be granted even otherwise.This scheme is illustrated in more detail by an example in section 6.22

www.manaraa.com

Delegation without delegate authenticationAnother variant consists in omitting the authentication between B and C,leaving the responsibility of authenticating B solely to A:1. After mutual authentication, A issues a certi�cate to B, under A's key.The certi�cate includes a key Kd and B's name. The inverse key K�1dremains a secret known at most to A and B.2. When B wishes to request r onA's behalf, B can present A's certi�cateto C, along with the request under the delegation key Kd.3. At this point C has evidence that B has requested r on behalf of A;now C consults the ACL for r, and determines whether the requestshould be granted.The most obvious novelty in this scheme is the introduction of a delegationkey Kd. One of the reasons why this is signi�cant is that the delegate cansimply forget the secret key K�1d in order to give up the power of acting onbehalf of the delegator; section 6 discusses this use of delegation keys. Fore�ciency, however, requests would be made under neither KB nor Kd, butrather under a shared session key, for example a DES key [8]. The use ofa session key is a signi�cant optimization, because of the e�ciency of DESencryption, and does not compromise security.The �nal items in these descriptions are deceptively identical. In the previ-ous schemes, C obtains direct evidence that B is making the request. In thisscheme, on the other hand, this evidence is provided only by A's certi�cate,which includes B's name. Accordingly, we may want C to make di�erentaccess control decisions in the two cases. This distinction is necessary, forexample in the case in which B is a protected subsystem. It is a distinctionthat a theory of delegation should allow, and hopefully clarify.Let us denote by A on B the compound principal that is obtained by thisdelegation scheme. It is sensible to assume that A) (A on B), for A to bebelieved when he claims that Kd speaks for A on B. This property suggeststhe de�nition (A on B) = (A _ (B for A)); the de�nition yields suitableproperties for on.The use of on is problematic in a world where some ACLs may allow B for Abut not A on B. The interaction between on and for is unfortunate. Inparticular, a request from A on B may fail where one from B for A would23

www.manaraa.com

succeed; this is unpleasant, since for could have appeared in the requestinstead of on. It poses the problem of how to choose when to use on andwhen to use for . It seems best to use for throughout. This choice can bemade a�ordable, and it also o�ers the advantage of simplicity|the designrequires fewer credential formats and fewer laws. Therefore, we do notdiscuss on further.5.2 The encodingThe delegation of all powers can be de�ned convincingly: A delegates to Bwhen A says that B speaks for A (that is, when A says (B) A) holds). Theconcept of delegation that interests us here is subtler. When A delegatesto B, the powers of B on behalf of A depend on the contents of the ACLsin the distributed system; A may be more reckless with delegations if thesepowers are small. In turn, the contents of the ACLs depend on how theirwriters understand the meaning of delegation. There is a circularity here.The meaning of delegation results from the combination of the contents ofthe ACLs in the system and of the behavior of delegators and delegates.Hence, we conclude that the meaning of delegation is a matter of policy orconvention.These remarks suggest an approach where the notion of delegation is primi-tive; we now sketch this approach, assuming for a moment that disjunction isavailable. The operator serves is taken as primitive, and axiomatized. Somestraightforward axioms come to mind, and in particular that B serves A isantimonotonic in B, and that if Bi serves A for all i, then (WiBi) serves A.Let E(A) be the weakest principal to which A has delegated, and let EB(A)be the weakest principal stronger than B to which A has delegated. ThenB for A can be de�ned to be EB(A)jA, and this equals (B ^ E(A))jA. Ax-ioms for delegation yield properties of for ; for example, the axioms givenyield that for is multiplicative in its second argument. We have not founda satisfactory way to obtain associativity.We prefer not having delegation as a primitive; the following thought experi-ment inspires an alternative approach. Imagine that there is a distinguishedprincipal D in the distributed system who operates as a delegation server.The function of D is to certify delegations. When A wants to delegate to B,it su�ces for A to tell D that if B says that A says s, then D should back24

www.manaraa.com

B. Thus, if BjA says s then DjA says s. Intuitively, D says that A says swhen a delegate of A's makes this assertion. Thus, we can take (B ^D)jAas a formal encoding for B for A. Notice the striking similarity betweenthis encoding of for and the previous formulation.It is not actually necessary for D to be implemented, just as typical rolesdo not correspond to real users and machines. When A wishes to dele-gate to B, A says that for all s, if B says that A says s then D says thatA says s; formally, it su�ces to have A says (BjA) DjA). The state-ment A controls (BjA) DjA) then represents that A can delegate to B.These two assertions together immediately yield (BjA) DjA), and when(BjA) says s, we obtain (DjA) says s, and then ((B ^D)jA) says s. In thisformal derivation, it is irrelevant whether D is a real server or not. (It isperhaps even better if D is not a real server, for then it cannot be attacked.)Thus, we can take B for A to mean (B ^D)jA, where D is a distinguished�ctional principal. Similarly, (BjA) DjA) can represent B serves A;hence, if B serves A then (BjA) B for A). This expresses the intuitionthat for is j \plus a delegation." The logical framework also allows thepossibility of weaker delegation statements, where A delegates only some ofthis rights; we prefer the use of roles for limiting the power of delegations.Our encoding has sensible formal consequences:� for is monotonic in both arguments.� for is multiplicative in both arguments, in fact. This follows from themultiplicativity of j and the de�nition of for :(B ^ B0) for (A ^A0) = (B ^B0 ^D)j(A^ A0)= ((B ^D) ^ (B0 ^D))j(A ^A0)= ((B ^D)jA) ^ ((B ^D)jA0)^ ((B0 ^D)jA) ^ ((B0 ^D)jA0)= (B for A) ^ (B for A0)^ (B0 for A) ^ (B0 for A0)� B for A is always de�ned, even if A has not delegated to B. In fact,we have: (BjA) ^ (C for A)) ((B ^ C) for A)and hence also (BjA) ^ (C for A)) (B for A)25

www.manaraa.com

This somewhat surprising theorem is the consequence of two desirable,basic properties: the monotonicity of for , and the antimonotonicity ofdelegation (which means that if A delegates to C, then it also delegatesto the stronger principal B ^ C).Additional properties of D yield further consequences:� If DjD) D then for possesses a weak associativity property:C for (B for A)) (C for B) for Awhich follows from the associativity and the multiplicativity of j:C for (B for A) = (C ^D)j((B ^D)jA)= (CjBjA) ^ (CjDjA) ^ (DjBjA) ^ (DjDjA)) (CjBjA) ^ (CjDjA) ^ (DjBjA) ^ (DjA)) (CjBjA) ^ (DjBjA) ^ (DjA)= ((C for B)jA) ^ (DjA)= (C for B) for AThe other direction of the implication is not valid. The essential reasonfor this is that C for (B for A) implies CjDjA, while (C for B) for Adoes not. Intuitively, this is because C's part in (C for B) for A neednot involve checking evidence that B is a delegate for A, or even thatA exists.� If A) DjA then (A^(BjA))) (B for A), because j is multiplicative:A ^ (BjA)) (DjA) ^ (BjA)= ((B ^D)jA)= B for AThis property means that when A makes a statement himself, there isno need to �nd a corresponding statement by the delegation server.� If A) DjA and A = AjA then A = A for A, that is, the idempotenceof j implies the idempotence of for :A for A = ((A^D)jA)= (AjA) ^ (DjA)= A ^ (DjA)= A26

www.manaraa.com

The additional properties for D are reasonable, and we adopt them. Theseproperties are reminiscent of those for roles. In the binary-relation model, forexample, these properties of D and those for roles all amount to saying thesame thing, that the associated binary relations are subsets of the identity.6 Protocols and AlgorithmsIn this section we consider some mechanisms for delegation and for accesscontrol decisions. The last subsection presents an example.6.1 DelegationWhile delegation has a single semantics, substantially di�erent implementa-tions are recommended for users and for nodes.6.1.1 Delegation from users to nodesThe schemes for delegation discussed in section 5 do not seem adequatefor users. Delegation from users to nodes poses special problems. Onedi�culty is that it is inconvenient for users to refresh delegation certi�cates.Refreshing a delegation certi�cate may require reintroducing a smart-card,for example. Therefore, it seems desirable that delegation certi�cates berelatively long-lived (valid for many hours).Long-lived delegation certi�cates pose a security threat, because a delegationcerti�cate may be valid long after the user has stopped using the node. Anattacker may subvert the node over a relatively long time period, and abusethe user's delegation. To prevent this from happening, it is best to introducean auxiliary delegation key that the node can forget deliberately when theuser leaves. The delegation certi�cate remains valid, but becomes useless.In more detail, the protocol goes as follows. First the user A delegates tothe node B and to a public key Kd provided by the node:A says ((Kd ^B) serves A)27

www.manaraa.com

The node has the inverse of the public key, and it can set up a channel Chfor (Kd ^ B) for A:Kd says A says (Ch) (Kd ^B) for A)and B says A says (Ch) (Kd ^B) for A)Hence ((Kd ^B) for A) says (Ch) (Kd ^ B) for A)follows logically. When this statement is believed, it yields:Ch) (Kd ^B) for Aand then monotonicity leads to the desired result:Ch) B for AHereafter B can make requests for A through the channel Ch. In practice,the channel may be obtained by multiplexing a longer-term secure channelfrom B; this longer-term channel may well be a DES channel.The delegation from Kd to the channel has a relatively short lifetime, andneeds to be renewed frequently. When the node forgets Kd deliberately, itloses the ability to refresh the certi�cate for the channel Ch .6.1.2 Delegation from nodes to nodesFor nodes, the schemes of section 5 are convenient enough. The one cor-responding to the for operator is simple, reasonably secure, and it can bemade e�cient enough for implementation.The same ideas work for cascaded delegations. Suppose that user A hasdelegated to node B, and B can operate with the identity B for A. If afurther delegation is needed, to a node C, the precise delegation statementis: (BjA) says (C serves (B for A))Since A has delegated to B, it follows logically that:(B for A) says (C serves (B for A))28

www.manaraa.com

This statement is believed, and it yields:C serves (B for A)Now C can make a request r on behalf of B for A:C says (B for A) says rand then the delegation from A yields:(C for (B for A)) says r6.2 Access control decisionsUnfortunately, the set of valid formulas of the calculus of principals is notrecursive for any useful de�nition of validity, but it is recursively enumerable.Undecidability can be proved by a reduction from the word problem for Thuesystems, for example. On the other hand, the formulas that arise in accesscontrol are not arbitrary; the next two parts discuss decidable access controlproblems.6.2.1 A general access control problemThe problem of making access control decisions is computationally complex.It is important therefore to understand the precise form of its instances. Theparts of an instance are:� An expression P in the calculus of principals represents the principalthat is making the request. In particular, all appropriate delegationsare taken into account in constructing this expression. The variousrelevant certi�cates are presented for checking.� A statement s represents what is being requested or asserted; the state-ment is presented explicitly by the requester, and the service providerdoes not need to derive it logically from other statements. The precisenature of s is ignored|it is treated as an uninterpreted propositionsymbol.� Assumptions state implications among principals; these typically rep-resent assumptions about group memberships. They have the form29

www.manaraa.com

Pi) Gi, where Pi is an arbitrary expression in the calculus of princi-pals and Gi an atom. Note that this syntax is liberal enough to writeGjG) G for every appropriate G of interest, obtaining some of thebene�t of the idempotence axiom.� Certain atomic symbols R0, : : : , Ri, : : :are known to denote roles.This may be obvious from their names.� An ACL is a list of expressions E0, : : : , Ei, : : : in the calculus ofprincipals; these represent the principals that are trusted on s.The basic problem of access control is deciding whether Vi(Pi) Gi) andVi(Ei controls s) imply P controls s, given the special properties of rolesand of the delegation server D. We simplify the problem, and ask insteadwhether Vi(Pi) Gi) implies P) Ej for some j.In this simpli�cation, ACL entries are considered one by one, and their pos-sible interactions are ignored. ACL entries written by two di�erent userscannot lead to results that neither of them could foresee. The simpli�ca-tion of the problem is both convenient and sound, but in some cases itis incomplete. For example, when the model is a monoid of binary rela-tions, if R controls s and R0 controls s and both R and R0 are roles, then(R0jR) controls s; on the other hand, the requester (R0jR) is denied ac-cess when the entries R and R0 are considered separately. We do not knowunder what general conditions one has completeness; however, we prove acompleteness result in the next subsection.Fixing a j and introducing an auxiliary atom A, the access control questionbecomes whether Vi(Pi) Gi) and Ej) A imply P) A. After somerenamings, this is: given expressions P , Q0, : : : , Qi, : : : , and atoms A, B0,: : : , Bi, : : : , does Vi(Qi) Bi) imply P) A?This problem has a few interesting, tractable cases. If we ignore roles andD for the time being and allow only the operator ^, we have the problem ofderiving a Horn clause from other Horn clauses. If instead the only operatoris j, we have the problem of deciding membership of a word in a context-freelanguage. The word corresponds to P , and the grammar for the context-free language comes from the implications (Qi) Bi); the atom A serves asinitial symbol.It is the combination of ^ and j that makes the problem hard. More precisely,let us ignore roles and D, allow both j and ^, and assume the theory of30

www.manaraa.com

multiplicative semilattice semigroups. Context-free grammars can still beencoded, but in addition the \universal branching" due to ^ alternates withthe \existential branching" that comes from choosing between rules of theencoded grammars. Using these ideas, we have sketched a proof that theproblem of making access control decisions is equivalent to the acceptanceproblem for alternating pushdown automata [6].It follows that the fairly general access control problem that we posed re-quires exponential time. We believe that the inclusion of various reasonableproperties for roles and for D does not worsen this complexity. (We haveconsidered some of the cases.) Although all of the expressions involved seemlikely to be small, we fear that our algorithms would not run fast enough inpractice. Further restrictions are wanted.6.2.2 A more tractable problemA second version of the access control problem is based on some furthersimpli�cations:� The for operator takes a more prominent role. Since it is expected tobe common, one would want an algorithm that does not treat it byexpanding it in terms of ^ and j, with an exponential blow-up.� In e�ect, for is treated as an associative operator. More precisely,we assume that all ACLs have the weakest parenthesization possible.This enables us to ignore the parenthesization of the requester.� The j operator occurs only in the encoding of for and as , and D occursonly in the encoding of for .� Roles are di�erentiated from other principals (called proper princi-pals), and occur in special positions. The set of atomic symbols forproper principals is P ; the set of atomic symbols for roles is Q.� Assumptions (group memberships) are restricted to be of the formatom) atom , where both atoms are either in P or in Q. In particular,this forbids the assumptions of the form GjG) G, which would giveus some bene�ts of idempotence where appropriate.31

www.manaraa.com

� It is therefore necessary to include a construct for writing, in an ACL,that any positive number of iterations of a principal are allowed. Weintroduce a metalogical construct ()+ for this purpose; for exampleF for G+ is a shorthand for the list F for G, (F for G) for G, : : : .An ACL is a list of ACL entries. In turn, an ACL entry is a conjunction ofACL entries free of ^, called for -lists. A for -list is a list connected by for 's,that is, it has the form P0 for : : : for Pm, where each Pi is a principal inroles. A principal in roles is of the form Q as R1 as : : :Rn, where Q is aproper principal and each Rj is a role.This de�nition is summarized by a grammar:ACL = list of EntryRequester = EntryEntry = conjunction of for -listfor-list = Principal-in-Roles j for-list for Principal-in-RolesPrincipal-in-Roles = Proper-Principal j Principal-in-Roles as RoleMembership = Proper-Principal) Proper-Principal j Role) RoleThe syntactic conditions can be loosened, as this normal form for ACLentries can be obtained by two syntactic transformations justi�ed by thelaws of the logic. Conjunctions can be pushed outwards, since both as andfor distribute over ^; this normalization is the only source of exponentialbehavior, and it can be expected to be unimportant in the common exampleswhere conjunctions are rare. Roles can be pushed inwards, into the delegatorargument of for 's; this step is e�cient.With these syntactic restrictions, a more e�cient access control algorithmis possible:� The request is granted if the requester implies one of the ACL entries.� Each ACL entry is a conjunction of for -lists, and so is the requester.For the requester to imply an ACL entry, it must be that for eachconjunct of the ACL entry there exists some conjunct of the requesterthat implies it.� A for -list implies another if they are of the same length, and eachprincipal in roles of the requester implies the corresponding one of theentry. 32

www.manaraa.com

� A principal in roles Q as R1 as : : : as Rn implies another Q0 as R01 as: : : as R0n0 if Q implies Q0 and for each Rj there exists R0k such thatRj implies R0k.� An atomic symbol P implies another atomic symbol P 0 if there is achain of assumptions P = P0) : : :) Pn = P 0.It is simple to describe this algorithm to users, and it is also simple toimplement it. The adequate speed of a prototype implementation suggeststhat the algorithm might well be practical. The metalogical construct ()+does not introduce any major algorithmic di�culty. Its treatment is wellunderstood, as it is standard in the context of regular languages.The algorithm is sound for the binary-relation model, where we take allroles to be subsets of the identity. The algorithm is also complete for thebinary-relation model. Note in particular that the algorithm treats all rolesas idempotent, and they all commute with one another.Theorem 1 (Soundness and Completeness) Let E0; : : : ; Ei; : : : be anACL, P a requester, and Vi(Bi) B0i) a conjunction of assumptions. Thealgorithm grants the request if and only ifî (Bi) B0i) ^ î (Ei controls p) � (P controls p)is valid for all p over binary-relation models.Proof The soundness proof is simple. The algorithm works by attemptingto prove that P) Ei for some i from the assumptions, and does so soundly.Moreover, the truth of P) Ei implies that if Vi(Ei controls p) holds thenso does P controls p.The completeness proof is clearest when there are no assumptions, andhence we �rst treat that case. We suppose that the algorithm does notgrant a request and obtain that there is a binary-relation model whereVi(Ei controls p) holds but P controls p does not, for some p. This re-quires that p be false, that P says p be true, and that Ei says p be false forall i.It su�ces to �nd some binary-relation model where :(w0R(P)w0) andR(Ei)(w0) 6�R(P)(w0) for all i. Then we can de�ne an interpretation that makes the33

www.manaraa.com

proposition symbol p true at all w such that w0R(P)w, and false at all otherworlds.The binary relation model is constructed in a fairly usual way, from strings.Let T = P � 2Q, and let S be the set of strings over T . The set S is our setof possible worlds; the empty string is w0.If Ai 2 Q, then its interpretation J(Ai) is de�ned by:I(Ai) = f(x � (Aj ; B); x � (Aj ; B)) j Aj 2 P ; Ai 2 B � QgHence roles are interpreted by subsets of the identity, as required. If Ai 2 Pthen, instead: J(Ai) = f(x; x � (Ai; B)) j B � Qgwith the exception of the special constant D:J(D) = ;Thus, in this model, for and j are equivalent; this is merely a convenience.The interpretation of a principal expression Q relates the empty string toall strings (Pn; fR1n; : : : ; Rmnn g) � : : : � (P1; fR11; : : : ; Rm11 g)such that(P1 as R11 as : : : as Rm11) for : : : for (Pn as R1n as : : : as Rmnn)is one of the for -lists in Q, and also to all strings obtained from the strings(Pn; fR1n; : : : ; Rmnn g) � : : : � (P1; fR11; : : : ; Rm11 g)by enlarging the role sets. Note that in any case the empty string is neverrelated to itself, as the for -lists are not empty, so in particular :(w0R(P)w0)holds.Suppose that, for some i, the algorithm does not manage to prove thatP) Ei. Then there must be some conjunct in Ei that is not implied(according to the algorithm) by any of the conjuncts in P . Suppose thisconjunct is:(P1 as R11 as : : : as Rm11) for : : : for (Pn as R1n as : : : as Rmnn)This implies that the empty string is related to:(Pn; fR1n; : : : ; Rmnn g) � : : : � (P1; fR11; : : : ; Rm11 g)34

www.manaraa.com

by the interpretation ofEi. On the other hand, there is no conjunct in P thatestablishes this relation. Thus, the model satis�es R(Ei)(w0) 6� R(P)(w0).This proves our initial completeness claim. Next we deal with assumptions.Without loss of generality, we can take the assumptions to be transitive,that is, if both Ai) Aj and Aj) Ak are assumed then so is Ai) Ak.Let us replace each symbol Ai in P with the conjunction of all symbolsAj such that Ai) Aj is among the assumptions. Let P 0 be the expressionobtained after this replacement and after normalization (after ^'s are movedoutwards). The algorithm grants the request to P if and only if it grantsthe request to P 0|the additional conjuncts in P 0 do not add strength inpresence of the assumptions. Moreover, the algorithm grants the request toP 0 using the assumptions if and only if it grants the request without theassumptions|as the additional conjuncts in P 0 can be exploited to dispensewith the assumptions. In short, P obtains access with the assumptions ifand only if P 0 obtains access without them.Now it su�ces to show that a similar equivalence holds at the semantic level.Given a model M0 where Vi(Ei controls p) does not imply P 0 controls p, weconstruct a model M where all of the assumptions hold and Vi(Ei controlsp) does not imply P controls p. The models M and M0 di�er only in theirinterpretation functions, JM and JM0 :JM(Ai) =[fJM0(Aj) j Ai) Aj is among the assumptionsgNote that all roles are still interpreted as roles.The meaning of P 0 in M0 is equal to the meaning of P 0 in M, and it isequal to the meaning of P in M. Moreover, all of the assumptions holdin M. The meaning of the Ei's in M is larger than in M0, thus makingweaker the assumption Vi(Ei controls p). This shows thatM has the desiredproperties.6.3 An exampleThe most typical, complete example is that of a user logging into a work-station, and the workstation making requests on a server.� The user A authenticates and delegates in some role RA to a worksta-tion B in role RB. The user may rely on a smart-card, and use the35

www.manaraa.com

scheme for user delegation outlined in subsection 6.1. The delegationcerti�cate is:KA says RA says ((Kd ^ (B as RB)) serves (A as RA))� The workstation sets up a secure channel to a server. Logically, thisrequires two statements:Kd says (A as RA) says (Ch) ((B as RB) for (A as RA)))under the delegation key, andKB says RB says (A as RA) says (Ch) ((B as RB) for (A as RA)))(For simplicity, the workstation acts in the role RB, but any strongerrole would do just as well.)� The server needs to check that KA is the user's key and that KB isthe workstation's key, that is, KA) A and KB) B. Typicallythis requires looking at certi�cates from a certi�cation authority; it ispossible that a chain of certi�cation authorities needs to be involved,as there may be no single universally trusted certi�cation authority.� With these properties of the keys, it follows from the delegation cer-ti�cate that:(A as RA) says ((Kd ^ (B as RB)) serves (A as RA))and this statement is believed. The channel set-up certi�cates yield:((Kd ^ (B as RB))j(A as RA)) says(Ch) ((B as RB) for (A as RA)))and this leads to((B as RB) for (A as RA)) says (Ch) ((B as RB) for (A as RA)))and then Ch) ((B as RB) for (A as RA))as (B as RB) for (A as RA) is trusted on this matter.36

www.manaraa.com

� The user may indicate to the workstation that he wishes to reduce hisprivileges, and adopt a further role R0A, in order to make a requestr; or the workstation may do this on behalf of the user, on its owninitiative: (Ch as R0A) says rThe requester here is ((B as RB) for (A as RA)) as R0A, which isequivalent to (B as RB) for (A as RA as R0A).� The ACL at the server may contain (G0 as RB) for (G as R00A). Theserver may have, or the workstation may present, certi�cates thatprove that A) G, RA) R00A, R0A) R00A, and B) G0.� Actually, the group membership certi�cates come signed with some-one's public key. In each case it must be possible to resolve this publickey into a name, and then to discover that the name is that of someonewho is trusted to certify membership in the group.� At this point, the algorithm for access control can easily determinethat access should be granted.7 ExtensionsOur main goal in this paper has been to isolate some useful and mathe-matically tractable concepts. We have only touched on many practical andtheoretical matters that deserve more detailed treatments. In addition, thebasic logic could be extended in many interesting ways. To conclude, webrie
y describe three extensions.7.1 IntersectionAn intersection operation \ permits the construction of groups from groups.It is not a logical connective in the sense that conjunction is, as it can onlybe applied to atomic symbols (so for example (Aj jAi) \ Ak is not a legalexpression).Conjunction is strictly weaker than intersection: (A\B)) (A^B) is validbut (A^B)) (A\B) is not. A weaker property than (A^B)) (A\B)holds: if C) A and C) B then C) (A \ B) provided C is in somesense atomic. Atomicity is not a logically de�ned notion; intuitively, simple37

www.manaraa.com

principals such as users and machines are atomic, while the conjunction oftwo such principals is not.An application of intersection concerns restricting access to only a particularmember of a group. The ACL entry A^G grants access toA if A is a memberof G, but it also grants access to A ^B if B is a member of G. In contrast,A\G grants access to A if A is a member of G, but not to A^B even if Bis a member of G.7.2 SubtractionAnother important operation on groups is subtraction (�). It provides theability to specify that certain named individuals or subgroups within a su-pergroup should be denied access, even when such access is granted to thesupergroup. Subtraction is the only negative construct for ACLs in thispaper.Subtraction has a simple semantics in centralized systems, where it is easyto decide group membership. There, subtraction is simply set subtraction.The situation is di�erent in distributed systems, because in general it ispossible to prove only membership in groups, but not nonmembership.Consider, for example, a situation in which G00�G appears in an ACL, withA) G, A) G0, G) G00, and G0) G00. Should access be granted toA? The facts A) G and G) G00 may not be available to the proceduremaking the access control decision. Moreover, we cannot expect A to provideproofs for them|as this is probably of no bene�t to A. Therefore, the accesscontrol decision cannot depend on A) G and G) G00, and hence accessshould be granted in this case. In short, G00�G means \all members of G00,except for those that are members of G00 only via G."This de�nition of subtraction is somewhat operational. Nevertheless, it isthe best possible, and it has even been suggested that it provides an intuitivesemantics for subtraction.Even in distributed systems, there are groups for which it is possible toprove both membership and nonmembership. Typically, these groups arethose managed by fairly centralized subsystems of the distributed system.The traditional set subtraction operation can be made available for thesegroups. 38

www.manaraa.com

7.3 VariablesSo far, we have provided for only the most basic form of joint signatures, anda more general form would be useful. One would like to be able to expressthat access should be granted to any two di�erent members of a given groupwhen they sign jointly, without listing all allowed combinations. Moreover,one may require that the two signers bear a certain relation to one another.The introduction of variables provides the desired expressiveness, and more.Variables can be included in ACLs. When a requester matches an ACLentry, we identify the parts of the requester that match against each of thevariables in the ACL entry, and bind the variables to these parts. It is thenpossible to evaluate arbitrary predicates on these variables.For example, the entry yjx is equivalent to GjF when we require that x) Fand y) G. Other requirements on x and y can be added, for instance thatx and y be di�erent, or that y be a machine owned by x. (Intuitively,it becomes possible to generalize from unary relations to arbitrary ones.)The entry has an implicit universal quanti�er: it means that, for all x andy, if x and y satisfy all requirements then (yjx) controls s, where s is thestatement under consideration. Trivially, BjA matches yjx; access is grantedif the requirements hold when x is replaced with A and y with B.The manipulation of variables can be added to the algorithm of subsec-tion 6.2.2. There are some complications, however. In particular, somemetalogical construct to handle lists of principal expressions is needed ifvariables are to be legal in the scope of the iteration construct ()+.The use of variables may not be the only or the best way to provide thedesired expressiveness. It seems to deserve further study.
39

www.manaraa.com

GlossaryA says s: A makes the statement s.A controls s: A is trusted on s: if A says s then s. This is the meaning ofA appearing in the ACL for s.A) B: A is a stronger principal than B. (For example, when B representsa group, A may represent a member or a subgroup of B.) If A says sthen B says s, and if B controls s then A controls s.A = B: A) B and B) A.B serves A: B is a delegate for A. This can be de�ned as (BjA) B for A).A ^ B: A and B in conjunction; (A ^ B) says s if and only if A says s andB says s.BjA: B quoting A; (BjA) says s if and only if B says A says s.B for A: B on behalf of A. This can be de�ned in terms of a �ctionaldelegation server D, as (B ^D)jA. If B says A says s and B serves Athen (B for A) says s.A as R: A in role R. This can be encoded as AjR.A \ B: the intersection of A and B, if A and B are atomic symbols.A� B: A minus B, if A and B are atomic symbols.
40

www.manaraa.com

AcknowledgementsMorrie Gasser, Andy Goldstein, and Charlie Kaufman were at the origin ofmany of the ideas discussed here. Tim Mann, Garret Swart, and Ted Wob-ber participated in fruitful discussions about implementations and examples.Bill Shockley convinced us of the practical importance of the extension de-scribed in subsection 7.3. Greg Nelson and Vaughan Pratt helped in under-standing the algebra of principals. Roger Maddux told us about Andr�eka'swork. Luca Cardelli and Cynthia Hibbard provided editorial suggestions.

41

www.manaraa.com

References[1] M. Abadi and G. Plotkin. A Logical View of Composition and Re�ne-ment. Proceedings of the Eighteenth ACM Symposium on Principles ofProgramming Languages, January 1991, pp. 323{332.[2] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authenticationand Delegation with Smart-Cards. In Theoretical Aspects of ComputerSoftware, Springer-Verlag LNCS 526, September 1991, pp. 326{345.[3] H. Andr�eka. Representations of Distributive Lattice-ordered Semi-groups with Binary Relations. Manuscript, August 1989.[4] M. Burrows, M. Abadi, and R.M. Needham. A Logic of Authentication.Proceedings of the Royal Society of London A Vol. 426, 1989, pp. 233{271.[5] CCITT. CCITT Blue Book, Recommendation X.509 and ISO 9594-8:The Directory-Authentication Framework. Geneva, March 1988.[6] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. JACM Vol. 28,No. 1, January 1981, pp. 114-133.[7] M. Dam. Relevance Logic and Concurrent Computation. Proceedings ofthe Third IEEE Symposium on Logic in Computer Science, July 1988,pp. 178{185.[8] National Bureau of Standards. Data Encryption Standard. Fed. In-form. Processing Standards Pub. 46. Washington DC, January 1977.[9] W. Di�e and M. Hellman. New Directions in Cryptography. IEEETransactions on Information Theory IT-22, No. 6, November, 1976,pp. 644{654.[10] R. Fabry. Capability-based Addressing. CACM Vol. 17, No. 7, July1974, pp. 403-412.[11] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The DigitalDistributed System Security Architecture. Proceedings of the 1989 Na-tional Computer Security Conference, October 1989, pp. 305-319.42

www.manaraa.com

[12] M. Gasser and E. McDermott. An Architecture for Practical Delegationin a Distributed System. Proceedings of the 1990 IEEE Symposium onSecurity and Privacy, May 1990, pp. 20{30.[13] J.-Y. Girard. Linear Logic. Theoretical Computer Science Vol. 50, 1987,pp. 1-102.[14] G.E. Hughes and M.J. Cresswell. An Introduction to Modal Logic.Methuen Inc., New York, 1968.[15] J. Kohl, C. Neuman, and J. Steiner. The Kerberos NetworkAuthentication Service (version 5, draft 3). Available by anony-mous ftp from athena-dist.mit.edu as /pub/doc/kerberos/V5DRAFT3-RFC.fPS,TXTg, October 1990.[16] D. Kozen. A Completeness Theorem for Kleene Algebras and the Al-gebra of Regular Events. Cornell TR90-1123, May 1990.[17] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentica-tion in Distributed Systems: Theory and Practice. Proceedings of theThirteenth Symposium on Operating System Principles, October 1991,pp. 165{182.[18] H. Levy. Capability-based Computer Systems. Digital Press, 1983.[19] S.P. Miller, C. Neuman, J.I. Schiller, and J.H. Saltzer. Kerberos Au-thentication and Authorization System. Project Athena Technical PlanSection E.2.1, MIT, July 1987.[20] R.M. Needham and M.D. Schroeder. Using Encryption for Authentica-tion in Large Networks of Computers. CACM Vol. 21, No. 12, December1978, pp. 993{999.[21] V. Pratt. Dynamic Algebras as a Well-behaved Fragment of RelationAlgebras. In Algebraic Logic and Universal Algebra in Computer Sci-ence, Springer-Verlag LNCS 425, 1990.[22] R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Dig-ital Signatures and Public-key Cryptosystems. CACM Vol. 21, No. 2,February 1978, pp. 120-126.[23] J. Saltzer and M. Schroeder. The Protection of Information in Com-puter Systems. Proceedings of the IEEE Vol. 63, No. 9, September 1975,pp. 1278-1308. 43

www.manaraa.com

[24] K. Sollins. Cascaded Authentication. Proceedings of the 1988 IEEESymposium on Security and Privacy, April 1988, pp. 156-163.[25] S. Vickers. Samson Abramsky on Linear Process Logics. FoundationWorkshop Notes, October-November 1988.[26] D.N. Yetter. Quantales and (Noncommutative) Linear Logic. Journalof Symbolic Logic Vol. 55, No. 1, March 1990, pp. 41-64.

44

